Printed Page 1 of 2

Paper Id: 120101

Roll No:

B TECH

(SEM-I) THEORY EXAMINATION 2019-20

BASIC ELECTRICAL ENGG.

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

$2 \ge 10 = 20$

Sub Code:KEE101

Qno.	Question	Marks	С
			0
a.	What do you understand by unilateral and bilateral elements? Give examples.	2	1
b.	What is the utility of superposition theorem?	2	1
c.	Determine the form factor of AC current i= 200 Sin (157 t + $\pi/6$).	2	2
d.	Explain the term "Dynamic Impedence" in AC circuits	2	2
e.	How MMF is related to Reluctance. Explain	2	3
f.	Define voltage regulation of a transformer.	2	3
g.	Why commutator is needed?	2	4
h.	Give the expression of speed in terms of poles and frequency of supply.	2	4
i.	Write full form of (i) MCB (ii) MCCB (iii) ELCB (iv) SFU.	2	5
j.	What are the factors that affect the battery capacity?	2	5

SECTION B

2. Attempt any *three* of the following:

$10 \ge 3 = 30$

Qno.	Question	Marks	С
'			0
a.	Determine the current flowing through 5 ohms resistance in the network shown	10	1
	below (fig-1) using Thevenin's theorem.		
	$15V + \frac{4\Omega}{102\Omega} = 06A = 5\Omega$		
	Fig (1)		
b.	The instantaneous values of two alternating voltages are represented by $V_1 = 60$	10	2
	Sin θ and $V_2 = Sin (\theta - \pi/3)$. Derive expressions for the instantaneous values of		
	(i) the sum and (ii) the difference of these voltages.		
c.	Explain different types of Magnetic materials with examples.	10	3
d.	Derive the expression of torque for dc motor. Also discuss the applications of it.	10	4
e.	An alkaline cell is discharged at a steady current of 4 A for 12 hours, the average terminal voltage being 1.2 V. To restore it to original state of voltage, a steady current of 3 A for 20 hours is required, the average terminal voltabeing 1.44 V. Calculate the ampere-hour and watt-hour efficiencies in this particular case.	le10 ge	5

Download all NOTES and PAPERS at StudentSuvidha.com

Printed Page 2 of 2 Sub Code:KEF					
Paper	Id: 120101 Roll No:				
1					
-	SECTION C				
3.	Attempt any one part of the following:	$10 \times 1 =$	= 10		
Qno.	Question	Marks	0		
a.	Using superposition, find the current flowing through 2 ohm resistance in following circuit (fig-2).	10	1		
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ H_1 \\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} $ $ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ Fig(2) \end{array} $ $ \begin{array}{c} \begin{array}{c} \end{array}\\ Fig(2) \end{array} $				
b.	Derive an expression of delta to star and star to delta transformation with example and satisfy the condition of both expressions.	10	1		
4.	Attempt any one part of the following:	10 x 1 =	= 10		
Qno.	Question	Marks	СО		
a.	Derive an expression of resonance frequency in series resonance circuit. If the bandwidth of a resonant circuit is 10 KHz and the lower half power frequency is 120 KHz, find out the value of the upper half power frequency and the quality factor of the circuit.	10	2		
b.	Derive the relationship between line and phase current & voltage for a star connected 3-phase balanced system. A balanced delta connected load of $(12 + j 9) \Omega$ / phase is connected to 3-phase 400 V supply. Calculate line current, power factor and power drawn by it.	10	2		
5.	Attempt any one part of the following:	10 x 1 =	= 10		
Qno.	Question	Marks	СО		
a.	Draw and explain the no load and full load phasor diagrams for a single phase transformer.	10	3		
b.	 (i) Explain single phase Auto transformer and give its application. (ii) In a 25 KVA, 2000 200 V transformer, the constant and variable losses are 350 W and 400 W respectively. Calculate the efficiency on unity power factor at (i) full load and (ii) half load. 	10	3		
6.	Attempt an <i>sone</i> part of the following: 10 x	$x 1 = \overline{10}$			
Qno.	Question	Marks	СО		
a.	Draw the slip-torque characteristics of three phase induction motor. A 3-phase, 50 Hz induction motor has 6 poles and operates with a slip of 5 % at a certain load. Determine (i) the speed of the rotor with respect to the stator (ii) the frequency of rotor current (iii) the speed of the rotor magnetic field w	10 vith	4		
b.	 (i) Describe any one method of starting single phase induction motor with neat diagram. (ii) When Some horizontary in the 15 to the 2 	10	4		
7	(11) Why Synchronous motor is not self starting?	10 v 1 -	= 10		
··	Accumpt any one part of the following.	10 A I -			
Qno. a.	Question Explain the requirement of earthing for electrical equipment. What is the difference between neutral and earthing	Marks	5		

Download all NOTES and PAPERS at StudentSuvidha.com